This note is mostly based on the appendix of the lecture note of Prof. Mila

8 Indistinguishabdity of identicle particles * Second quantization is a useful language to deal with <u>identical</u> particles 1) The wave function should be symmetric or antisymmetric under the exchange of two particles:

> $4(x_1,x_2) = e^{id}4(x_1,x_1)$ $\Longrightarrow \psi(\alpha_1, \chi_2) = e^{i\alpha} \psi(\alpha_1, \chi_1) = e^{2i\alpha} \psi(\alpha_1, \chi_2)$

So $e^{2id} = 1 \implies e^{id} = \pm 1$ $+1:boson \qquad -1:fermion$

2) Restriction to the wave function; Fock space Denote by $\{|\lambda i\rangle\}$ a basis of one-particle wave function $(4\lambda_i(\alpha))$

Slater determinant:

TE Z IPOWA @ IPOWA ... @ IPOWA symmetric wave function $\mathcal{L}(\alpha_1,\cdots,\alpha_N) = \frac{1}{\sqrt{C}} \sum_{p} \mathcal{L}_{p_{\alpha_1}}(\alpha_1) \cdots \mathcal{L}_{p_{\alpha_N}}(\alpha_N)$ n# permutations

If there are 2 or more equal indicies, then permutations involving those terms are only counted once * e.g. two particles

e.g., 3 particles using 4, twice & 4, once: $|\psi\rangle = \frac{1}{\sqrt{2}} \left([\lambda_1 \rangle_{\varnothing} |\lambda_1 \rangle_1 + |\lambda_2 \rangle_{\varnothing} |\lambda_1 \rangle_2 \right)$ 4(06)4,(05)45(05) + 4(06)4(05)4(05) Fermion

+ 4,(x,)4,(x,)4,(x,)

42N(X1) 42N(X2) ... 42N(XN) * e.g. two particles

 $|\psi\rangle = \frac{1}{\sqrt{2}} \left([\lambda_1 \lambda_2 \otimes \lambda_1 \lambda_2 - \lambda_2 \lambda_3 \otimes \lambda_3 \lambda_2] \right) \sigma \quad |\psi\rangle = \frac{1}{\sqrt{2}} \left(-|\lambda_1 \lambda_2 \otimes \lambda_3 \lambda_2 + \lambda_2 \lambda_3 \otimes \lambda_3 \lambda_3 \right)$ It is worthwhile to point out that Slate Det can pick up a minus sign, so once the order of the quantum status $\lambda_1, \cdots, \lambda_m$ is set at the beginning, we shall never change it from later on.

• For system of identicle particles, it suffices to only specify how many particles there are on each level (eigenstate): $|\Psi\rangle \equiv |N_1,N_2,\cdots,N_M\rangle$ $|\lambda\rangle = |N_1,N_2,\cdots,N_M\rangle$ As long as $\{N_i\}$ is fixed, there is no more from to play around.

**X For fermionic systems, $N_i=0,1$. If two fermions are at the same level, the Slates determinant immediately becomes 0.

Nl possible [N.,..., Nm > span a huge Hilbert space called Fock space,

§ Harmonic oscillator (As the inspiration for antroducing creation and annihilation operator)

(optimal) (See the lost)

§ Creation and destruction Given a single particle basis $\{|\lambda i\rangle\}$, we construct the basis of Tock space as operators in Tock space $|N_1, N_2, \dots, N_m\rangle$ Let's define creation and destruction operator by explicitly write down the matrix

 \star For fermions, the addition $\langle N_1, ..., N_i + 1, ..., N_m | Q_i^{\dagger} | N_1, ..., N_i, ..., N_m \rangle = \sqrt{N_i + 1}$ should be understood as modulo 2 $\langle N_i, ..., N_i, ..., N_m | Q_i^{\dagger} | N_1, ..., N_i + 1, ..., N_m \rangle = \sqrt{N_i + 1}$ $1 + 1 = 0 \mod 2$ On otherwise

2 Ansicommutation — fermion

In short, [ai, gi] = [ait, gi] = 0 $[ai, gi^{\dagger}] = dij$

The setuation for fermions is a bit more complicated.

First note that

 $\frac{C^{\dagger}|0,0\rangle = |1,0\rangle = |\lambda\rangle}{C_{1}C_{1} = C^{\dagger}C^{\dagger} = 0}$ $\frac{C_{1}C_{1} = C^{\dagger}C^{\dagger} = 0}{N_{1} = 0 \text{ m } 1}$

 $\Longrightarrow [a_i, a_i^{\dagger}] = 1$

What is the wavefunction after we put another fermion at
$$\lambda_{2}$$
, i.e. what is $C_{1}^{\dagger}C_{1}^{\dagger} \mid 0,0 > ?$

Two options
$$\begin{cases} \frac{1}{12} \left(\mid \lambda_{1} \rangle, \mid \lambda_{2} \rangle, - \mid \lambda_{2} \rangle \otimes \mid \lambda_{1} \rangle, \right) & \text{For bosons, only one possibility:} \\ \text{or} & \frac{1}{12} \left(\mid \lambda_{2} \rangle, \mid \lambda_{1} \rangle, - \mid \lambda_{1} \rangle \otimes \mid \lambda_{2} \rangle, \right) \end{cases}$$

Let's choose the first one as the fixed rule of adding fermions:
$$C_{1}^{\dagger} \mid 0,0 \rangle = \mid 1,0 \rangle = \mid \lambda_{1} \rangle$$

$$C_{2}^{\dagger} \mid C_{1}^{\dagger} \mid 0,0 \rangle = \mid 1,1 \rangle = \frac{1}{12} \left(\mid \lambda_{1} \rangle, \mid \lambda_{2} \rangle, - \mid \lambda_{2} \rangle, \mid \lambda_{1} \rangle, \right)$$

Then, what is $C_{1}^{\dagger}C_{1}^{\dagger} \mid 0,0 \rangle$?
$$C_{2}^{\dagger} \mid 0,0 \rangle = \mid \lambda_{2} \rangle$$

 $C_1^{\dagger}C_2^{\dagger}|_{0,0} \longrightarrow \frac{1}{12} \left(\lambda_2 |_{\lambda_1 > -(\lambda_1 > |\lambda_1 > -(\lambda_1 > |\lambda_1 > -(\lambda_1 > |\lambda_1 > |\lambda_1 > -(\lambda_1 > |\lambda_1 > |\lambda_1 > |\lambda_1 > -(\lambda_1 > |\lambda_1 > |\lambda_1 > |\lambda_1 > |\lambda_1 > -(\lambda_1 > |\lambda_1 > |\lambda_1 > |\lambda_1 > -(\lambda_1 > |\lambda_1 > |\lambda_1 > |\lambda_1 > |\lambda_1 > |\lambda_1 > |\lambda_1 > -(\lambda_1 > |\lambda_1 >$ Therefore, $C_1^{\dagger}C_2^{\dagger} = -C_2^{\dagger}C_1^{\dagger}$, or $\{C_1^{\dagger}, C_2^{\dagger}\} = 0$ anticommutation!

Therefore,
$$C_1^{\dagger}C_2^{\dagger} = -C_1^{\dagger}C_1^{\dagger}$$
, or $\{C_1^{\dagger}, C_2^{\dagger}\} = 0$ anticommutation!

$$C_1C_1^{\dagger} + C_1^{\dagger}C_1$$
?

$$\{0 \mid C_1C_1^{\dagger} + C_1^{\dagger}C_1 \mid 0 \rangle = \{1\} \mid C_1C_1^{\dagger} + C_1^{\dagger}C_1 \mid 2 \rangle = 1$$

$$\{0 \mid C_1C_1^{\dagger} + C_1^{\dagger}C_1 \mid 2 \rangle = \{1\} \mid C_1C_1^{\dagger} + C_1^{\dagger}C_1 \mid 2 \rangle = 2$$

==> { C, , C, † } = 1 $C_1C_2^{\dagger} + C_2^{\dagger}C_1$? $C_1C_1^{\dagger} \mid 1, o \rangle = C_1C_2^{\dagger}C_1^{\dagger} \mid o, o \rangle = -C_1C_1^{\dagger}C_1^{\dagger} \mid o, o \rangle = -C_1^{\dagger}C_1^{\dagger}C_2^{\dagger} \mid o, o \rangle = -C_2^{\dagger}$ $C_{2}^{\dagger}C_{1}|1,0> = C_{2}^{\dagger}C_{1}C_{1}^{\dagger}|0,0> = C_{2}^{\dagger}(|-C_{1}^{\dagger}C_{1}^{\dagger})|0,0> = C_{2}^{\dagger}|0,0>$

 $\Longrightarrow \{C_i, C_i^{\dagger}\} = 0$

In short,
$$\{Ci,G\}=\{Ci^{\dagger},G^{\dagger}\}=0$$

{ Ci, Gt } = dij

• One-body operators $\hat{F}^{\alpha} = \sum_{i} \hat{f}_{i}$ i denotes each particle

Let's suppose \hat{f} is deagonalised by $\{|\lambda_y\rangle\}$: $\hat{f} = \sum_{i} \lambda_j^i |\lambda_j\rangle \langle \lambda_j^i|$, then we find that $\langle N_1', \dots, N_M' | \hat{F}_1 | N_1, \dots, N_M\rangle = \sum_{i} \langle N_1', \dots, N_M' | 100 \dots 0 \hat{f}_{i00} \dots 0 1 M_1 N_1 \dots N_M\rangle$ in the basis of $\{U_i\rangle\}$ = $\sum_{i,j=1}^k N_j^i \lambda_j^i \langle N_1', \dots, N_M' | N_1, \dots, N_M\rangle$

$$=>\hat{F}_1=\sum_{j}\lambda_j\hat{N}_j=\sum_{j}\alpha_j\hat{f}\hat{V}_j>\hat{\alpha}_{N_j}\hat{\alpha}_{N_j}$$
 By changing to a general basis $\{\mu > \hat{f}, we obtain$
$$\hat{F}^{(1)}=\sum_{\mu,\nu}\langle\mu|\hat{f}|\nu>\hat{\alpha}_{\nu}^{\dagger}\hat{\alpha}_{\nu}\rangle$$

• One can also derive the expression for two-body operators (with some more

$$\hat{F}^{(2)} = \sum_{\mu\nu} \sum_{\mu'\nu} \langle \mu\nu | \hat{f}^{(2)} | \mu'\nu' \rangle a_{\mu}^{\dagger} a_{\nu}^{\dagger} a_{\mu\nu} a_{\nu\nu}$$

teclions calculations);

X Fi∙st quantization

creation & destruction operators

 $H = \frac{\omega}{2} (X^2 + P^2)$, $[X, P] = \dot{z}$ (set $\hbar = 1$)

• Define $\begin{cases} a:=\frac{1}{\sqrt{2}}(x+ip) \\ a^{\dagger}:=\frac{1}{\sqrt{2}}(x-ip) \end{cases} \iff \begin{cases} x=\frac{1}{\sqrt{2}}(a+a^{\dagger}) \\ p=\frac{1}{i\sqrt{2}}(a-a^{\dagger}) \end{cases}$ and the commutation relation followed is then

 $[a, at] = \frac{1}{12}[X+iP, X-iP] = \frac{1}{12}(-i[X,P]+i[P,X]) = 1.$

 $H = \hbar \omega (\alpha t \alpha + \frac{1}{2})$

Besides, we can also check that

 $\partial \alpha = \frac{1}{2} (X - iP)(X + iP) = \frac{1}{2} (X^{2} + P^{2} + iEX, P]) = \frac{1}{2} (X^{2} + P^{2} - 1)$ Therefore, we can rewrite the Hamiltonian as

Let's define an Hermitian operator $N:=\Omega^{\dagger}\mathcal{Q}$, and write its eigenfunc-

tion as $|v\rangle = |v\rangle$

We can have the following observations:
1)
$$V \geqslant 0$$
 , since

$$\mathcal{V} = \langle v | N | v \rangle = ||\alpha | v \rangle ||^2 \ge 0$$

2) if
$$V=0$$
, then $||a|v>||^2=0$ => $a(v)=0$

$$N\alpha | \nu \rangle = ata\alpha | \nu \rangle = (-ta, a^t + aa^t) \alpha | \nu \rangle$$

$$=-a|\nu\rangle + aata|\nu\rangle = (\nu-1)a|\nu\rangle$$
 Hence, $a|\nu\rangle$ is also an eigenstate with the eigenvalue ν -1.

Similarly, we can also find that
$$0^{\dagger}|n>$$
 is also an eigenstate of N , with the eigenvalue $n+1$

:

Finally, let's determine the coefficient C_n

a $(\frac{n+1}{n})$ at $(\frac{n+1}{n})$ at $(\frac{n+1}{n})$ $(\frac{n+1}{n})$ $(\frac{n+1}{n})$ $(\frac{n+1}{n})$ $(\frac{n+1}{n})$ $(\frac{n+1}{n})$

 $|C_{n+1}|^2 = \langle n | \alpha \alpha^{\dagger} | n \rangle = \langle n | (\alpha^{\dagger} \alpha + 1) | n \rangle = n + 1$ \implies $C_{n+1} = \sqrt{n+1}$, similarly $C_{n-1} = \sqrt{n}$

In conclusion, $\begin{cases} \alpha^{\dagger} \mid n>=\sqrt{n+1} \mid n+1> \\ \alpha \mid n>=\sqrt{n} \mid n-1> \end{cases} , \text{ and we can generate all the}$

basis by $|n\rangle = \frac{1}{\sqrt{n!}} (at)^n |0\rangle$